Annealed Deviations of Random Walk in Random Scenery

نویسندگان

  • Nina Gantert
  • Wolfgang König
  • Zhan Shi
  • ZHAN SHI
چکیده

Let (Zn)n∈N be a d-dimensional random walk in random scenery, i.e., Zn = ∑n−1 k=0 Y (Sk) with (Sk)k∈N0 a random walk in Z d and (Y (z))z∈Zd an i.i.d. scenery, independent of the walk. The walker’s steps have mean zero and some finite exponential moments. We identify the speed and the rate of the logarithmic decay of P( 1 nZn > bn) for various choices of sequences (bn)n in [1,∞). Depending on (bn)n and the upper tails of the scenery, we identify different regimes for the speed of decay and different variational formulas for the rate functions. In contrast to recent work [AC03] by A. Asselah and F. Castell, we consider sceneries unbounded to infinity. It turns out that there are interesting connections to large deviation properties of self-intersections of the walk, which have been studied recently by X. Chen [Ch04]. Résumé : Soit (Zn)n∈N une marche aléatoire en paysage aléatoire sur Zd ; il s’agit du processus défini par Zn = ∑n−1 k=0 Y (Sk), où (Sk)k∈N0 est une marche aléatoire à valeurs dans Zd, et le paysage aléatoire (Y (z))z∈Zd est une famille de variables aléatoires i.i.d. independante de la marche. On suppose que S1 est centrée et admet certains moments exponentiels finis. Nous identifions la vitesse et la fonction de taux de P( 1 nZn > bn), pour diverses suites (bn)n à valeurs dans [1,∞[. Selon le comportement de (bn)n et de la queue de distribution du paysage aléatoire, nous découvrons différents régimes ainsi que différentes formules variationnelles pour les fonctions de taux. Contrairement au travail récent de A. Asselah and F. Castell [AC03], nous étudions le cas où le paysage aléatoire n’est pas borné. Finalement, nous observons des liens intéressants avec certaines propriétés d’auto-intersection de la marche (Sk)k∈N0 , récemment étudiées par X. Chen [Ch04]. MSC 2000. 60K37, 60F10, 60J55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deviations of a Random Walk in a Random Scenery with Stretched Exponential Tails

Let (Zn)n∈N0 be a d-dimensional random walk in random scenery, i.e., Zn = ∑n−1 k=0 YSk with (Sk)k∈N0 a random walk in Z d and (Yz)z∈Zd an i.i.d. scenery, independent of the walk. We assume that the random variables Yz have a stretched exponential tail. In particular, they do not possess exponential moments. We identify the speed and the rate of the logarithmic decay of P( 1 nZn > tn) for all se...

متن کامل

The Codimension of the Zeros of a Stable Process in Random Scenery

A stable process in random scenery is the continuum limit of a class of random walks in random scenery that is described as follows. A random scenery on Z is a collection, {y(0), y(±1), y(±2), . . .}, of i.i.d. mean-zero variance-one random variables. Given a collection x = {x1, x2, . . . } of i.i.d. random variables, we consider the usual random walk n 7→ sn = x1+ · · ·+xn which leads to the f...

متن کامل

A functional approach for random walks in random sceneries

A functional approach for the study of the random walks in random sceneries (RWRS) is proposed. Under fairly general assumptions on the random walk and on the random scenery, functional limit theorems are proved. The method allows to study separately the convergence of the walk and of the scenery: on the one hand, a general criterion for the convergence of the local time of the walk is provided...

متن کامل

Reconstructing a 2-color scenery by observing it along a simple random walk path

Let {~(n)}nEZbe a 2-color random scenery, that is a random coloration of in two colors, such that the ~(i)'s are i.i.d. Bernoulli variables with parameter~. Let {S(n)}nEN be a symmetric random walk starting at O. Our main result shows that a.s., ~ 0 S (the composition of ~ and S) determines ~ up to translation and reflection. In other words, by observing the scenery ~ along the random walk path...

متن کامل

Moderate Deviations for Random Walk in Random Scenery

We investigate the cumulative scenery process associated with random walks in independent, identically distributed random sceneries under the assumption that the scenery variables satisfy Cramér’s condition. We prove moderate deviation principles in dimensions d ≥ 2, covering all those regimes where rate and speed do not depend on the actual distribution of the scenery. In the case d ≥ 4 we eve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004